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GENERAL POTENTIAL SURFACES AND NEURAL NETWORKS

Amir Dembo and Ofer Zeitouni

Division of Applied Mathematics
Brown University
Providence, Rhode Island 02912

ABSTRACT

Investigating Hopfield's model of associative memory implementation by a
neural network, led to a generali:zed potential system with a much superior per-
formance as an associative memory. In particular, there are no spaurious memories,
and any set of desired points can be stored, with unlimited capacity (in the con-
tinuous time and real space version of the model). There are no limit cyvcles
in this system, and the si:ze of all basins of attraction can reach up to half
the distance between the stored points, by proper choice of the design parameters.

A discrete time version with its state space being the unit hypercube
is also derived, and admits superior properties compared to the corresponding
Hopfield network. In particular the capacity of any system of N neurons, with a
fixed desired size of basins of attractions, is exponentially growing with N and
is asymptotically optimal in the information theory sense. The computational
complexity of this model is slightly larger than that of the Hopfield memory,
but of the same order.

The results are derived under an axiomatic approach which determines the

desired properties and shows that the above mentioned model is the only one

to achieve them.
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:ﬁ INTRODUCTION

g. J. Hopfield's suggestion of a neural network model for associative memories
;; in [1], arose the interest of many scientists and led to an effort of mathe-

& matically analysing its properties [2-12]. It is simple to implement this model,
+% but hard to intuitively capture its properties, and even harder to rigouriously
ﬁ; analyze its performance as an associative memory. This is perhaps the main

4 reason for its attracting such interest.

W The yet partial analysis done on this preliminary model revealed the follow-
gs ing major disadvantages:

53 (a) There are many spourious memories generated at unexpected places

ik (c.f., [3,7,8,9,11]), which attract a major part of the inputs.

3. (b) The capacity of the various versions of this model is bounded by N

Zf (the number of neurons), (c.f., [3,5,6,7,8,10]), which is quite a poor capacity

A S ES

compared to the Information Theory bounds on error correcting codes. Some

suggestions as to how this bound can be enlarged appear in [12] but supply only

b a partial answer.
'} (¢) Not only that the capacity is limited, it is context dependent, i.e.,
L
k j there are very small sets of memories which cannot be stored in the original
o
? Hopfield model, and the shape of a basin of attraction depends on far away
{? attractors (c.f., [6]).
e
. This motivated another suggestion of a continuous-time model with evolution
‘o
! "-‘ . . . » .
s by N Ordinary Differential Equations (ODE's), (c.f., [13]). The new model is
v reported experimentally to have better performance, although it still suffers
s
gﬁ from some of the drawbacks of its ancestor. Furthermore, a rigourious analysis of
%
£ the ODE version seems to be almost impossible.
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In this work we take a different approach. We start by assuming only the
generic form of our model for associate memory, and derive its structure and
properties out of a set of assumptions on the system.

The basic model we have in mind is of a set of memories ('"particles', in
classical mechanics or electrostatics, of specified 'charge/mass'), which in
the simplest case are located in the location of the desired memories. In gen-
eral we allow for "spread out" charges (i.e., charge/mass densities instead of
§-functions). To each such "particle'" o, we therefore associate its ''charge
density" My In general (unlike in classical mechanics), we allow for various
"types'" of particles (memories), i.e., the potential associated with each particle
may be different (and this will affect the basins of attraction' shape). Indeed,
the following three properties would be desirable for an associative memory
model:

(P1) The system should be invariant to translations and retations of the
coordinates.

(P2) The system should be linear w.r.t. adding particles in the sense that
the potential of two particles should be the sum of the potentials induced by
the individual particles (i.e., we do not allow inter-particles interaction; see
however, the discussion in Section IV).

(P3) Particle locations are the only possible sites of stable memory
locations.

In order to state our results, we need to define exactly our system and describe
how we build a memory out of the desired specifications.

In what follows, we take RN to be our state space, and use first order,
potential type ODE's to avoid the kind of "kinetic equilibria" one finds in

second order equations, i.e., the equations of motion are:

x = -VV(x) €))
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where V(x) is our potential and V stands for the gradient operator. Since we
want to allow for various particle types, let us define a 'type-space" A. A

may be finite, countable, or even non-discrete, but clearly A is smaller than IRN,
and therefore finite dimensional. We assume that A is a measurable space so that
integration over A is well defined. The specific examples for A that we have

in mind are a finite, discrete set {1,2,...,K} or RY itself.

Our memory building process is defined as a transformation V(x) 8 Tl , )

N
where U € MR xA),

’ \
and M( IR:\' x A) stands for the space of measures over R" x A (which is clearly

a linear space). For example, assume we want a potential \"( (x) for a single

0
particle of type a (a € A) located at Xq- Then

vxo(x) = T(lxo % 13)

(P1) - (P3) now read

\J
(A1) T(u( R A)) = V(x) = T(u(c R" + n) x A)) = V(cx + n) where
N NxN . . . N .
ne€ER, c €ER is a nonsingular, orthogonal matrix, and ¢cR + n is the c-
\
rotation, n-translation of IRT\.
(A2) T is a linear transformation over M, i.e.,
N
T(u(R x A)) = LRN f(x,y,a)u(dy x da) (2)
XA

where f(x,y,a) is the kernel of the transformation (Green's function) and we

assume that f(:,-,:) is such that (2) makes sense,

(A3) Let V(x) = T(u( IRN x A)). Let D = {(x,0) [u(dx,a) # 0}, where {*}

denotes the closure of a set. Then V(x) does not possess minima outside of
p| ., where D| is the restriction of D to R,
mr\ IRN
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In addition, we assume throughout the necessary smoothness znd growth condi-

s tions on f(x,y,a) and its derivatives (w.r.t. x, y). In particular, we assume

\

% that if f(xo,yo,ao) is finite then f(x,y,ao) is twice continuously differentiable
# ' w.r.t. x at (x,yo), vx # Yo? with integrable derivatives w.r.t. u(:,-}.

]

i Our first result, which is proven in the appendix, is the following structure
g
'A theorem:
0]
W Theorem 1. V(-) satisfy (A1) - (A3) in a universal manner w.r.t. every y € M iff
A it is of the structure:

|"

W,
e 2 -
Vi) = |y £ U lxenl [T udn x da (3)
A R'"'xA
[ where Va € A, fa(llx—nllz) is a sub-harmonic function on R" - {n}, i.e.,
.1-2

Ty N

" —_— t

._l.:: vd > 0 fa(d)d * 3 fa(d) < 0. €))
?{ Solving (4) under the assumptions that f&(do) # 0, for some do > 0, and
e,
o £1(dp)d,
" adding the proper constant so that fa(do) i el (with the details given
' G-1

i 2
5‘ in the Appendix), we obtain for N > 3:
o
ﬁ, Lemma 1. Any solution of (4) can possess at most one local maxima (and no local
A
) minima), for d € (0,*), and satisfies:
:\: d "('bzi ’1)

> —

tk. fu(d)-— fa(do)(do) , for d z_do (5a)
! \
& d -(—1;- -1)
_ < — }
o fa(d) —-fu(dO)(do) , for d < d0 (5b)
K
Q: Remarks. 1. By local minima (maxima) we mean a strict minima (maxima). For
M :

ol strictly sub-harmonic functions, we can assure the also non-existence of non-

-
,gs strict extrema.
"

".'
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2. Equality in equations (5) for every d > 0 implies equality in (4), which
implies that fa(llx-nllz) is an harmonic function on R" - {n}. Whenever this
holds Yo € A, not only there are no strict local minima of V(x) outside D"R’ but
there are also no strict local maxima of V(-) at those points.

For this particular case (where for simplicity we use d0 =1, w.l.o.g.):

V(x) = J || x-n| |'(N'2)E(dn)
neRY (6)

where

e £ f £ (Du(-,da),
o€A

. . N
is a signed measure on R .

The derivation of the representation of V(:) was done under the most gen-
eral condition. Usually however, one is interested in an associative memory with
a discrete number of memories, possibly of different types. Let therefore
A = {1,...,k}, where K is the number of particles, and let the a-th memory be
(o)

located at u E]RN, i.e., u(n,a) =1 (o) x 1 We concentrate from now

a<K '’
n:u —

on on this class of systems, which is represented by
; o 2
veo = § £ (xR %
€A

For example, when we combine (6) and (7), we obtain:

Vix) = ] ) (8)
X) = 8
o€ ||x-ul® || (N-2)

which is exactly the Electrostatical potential in the particular case of N = 3,
For any value of N > 3, and V() given by (7), with fa(') satisfying (4),
we distinguish between two types of memories:
(A) Attractive memories, with fa(-) monotonically increasing at least at

some do < «, in which case lim fa(d) = -o (from (5b)), and from (5a) we note
d-0




¢ that (at least when fa(-) is non-decreasing everywhere), the potential induced by

(o)

. the memory at u should approach rapidly its limiting value as (d/do) increases.

For those memories:

N
A so that they are the global (and also local) minima of the potential function,
oF
» and correspond to relatively short-range interactions.
(B) Repulsive memories, with fa(~) monotonically non-increasing, in which
2] case lim f _(d) > -,
" 0
)3 In that case, u(a) is not a strict local minima of V(-), and two behaviors
\l.
A
) are possible:
;ﬁ (B1) 1lim fa(d) = o, lim fa(d) = const. An example is the electrostatic
" d+0 d-eo
;d force of a negative particle (instead of the positive one in (A)). Those are rela-
tively strong, short-range interactions, and are of interest if one wishes to
“"
%g "avoid" specific locations (as now u(a) is a strict global maxima of V(-)).
¢
o (B2) 1lim £ (d) = 0, (@nd usually, lim £,(d) = -=). An example is f(d) = -d
I'gt d—)O a d-ooo
\J ("repulsive spring"), and those forces are weak in the short range but strong in
(]
ﬁs the long range. We do not use those kind of repulsive memories in the sequel.
4".
ﬁz In particular, for the Electrostatical form of the potential given in (8),
*
'y

(a) }

V(-) is an harmonic function outside {u GEA’ thus possess all its local minima

in the attractive memories, and all its local maxima in repulsive memories of

*ACA, AA

type (Bl). Thus, we can store in the same system two kinds of objects. While |

, %)

the recall process using (1), will give rise to objects of type (A), the same

}

recall process with -V(:) instead of V(:) will give rise to objects of type (Bl).

0
{J The potentials given by (4) and (7), possess the major property one expects

L)

B from an associative memory. The desired memories are arbitrarily chosen, with

AN

‘. X . . 3 . .

q: their recall being guaranteed, and their number and distribution unrestricted.

L}

i.,. .

gg Furthermore, our assumption (A3), together with the properties of the potential

..‘L
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type ODE's in (1) (c.f. [14]) guarantee that except for a set of measure zero of
saddle points, every initial probe x(0) will converge to a desired memory u(a)
of type (A).

Our assumptions, (Al) and (A2), made the mathematical analysis tractable.
When some are omitted the class of potentials with property (A3) is enlarged.

For example without (Al) we obtain (3) with fa(x,n) instead of fa(|]x-n[|2), and

(4) is replaced by:
N N
vn € R°  Vx €R" - {n) A f (x,n) <0 (10)

where Ax stands for the Laplacian operator w.r.t. x. This corresponds to a ''non-
homogeneous'" state space, but complicates the mathematical analysis.

To compare our class of '"neural networks" with the model of [1], as well as
the Information Theory bounds on error correcting codes, we derive the discrete-
time finite state space analogue of the evolution (1).

Consider the state space as the unit hypercube in]RN, to be denoted by HN.
For any potential function V(x), the relaxation algorithm is (in the spirit of
(12]):

(A) According to some predetermined probability measure peak a point
y € HN having Hamming distance one from the current state x € HN.

(B) If V(y) < V(x), then the new state will be y, otherwise it remains x.

In both cases return to step (A).

(0)

As shown in [12], for any V(-) and x* 7, this algorithm converges to a

fixed point in HN. For any practical memory of this type, {u(o‘)}CIEA c HN, and
thus A is a finite set with K= |A] < 2.
Whereas the class of memories suggested here is of the form:
K .
V(x) = ‘21 fi(|lx-u(l)|[2) (11)
i=

)
00, .

Q0
,’\'h":?m:'!!
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with fi(o) satisfying (4), the model suggested in [1] corresponds to (11) with:

fi(d) = =[N - (N - %d)z] which does not satisfy (4).

(NI

Note that the more complex versions of this model (c.f., [5,6,8]), does
not satisfy assumptions (Al), (A2) at all.

In the next section we analyze the continuous-time model (the ODE's evolu-
tion), in terms of the basins of attraction, and convergence rate analysis. In
section III, the discrete time version is analyzed. The capacity (K), is re-
lated to the error correction capability, and compared with known results on
Hopfield's model. The last section is devoted to rough complexity analysis for
both models, as well as a comparison with the classical Hamming classifier (using
minimal distance search), and to possible generalizations of (1) which allow for

more complicated tasks as clustering, supervised learning, ectc.
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R II. BASINS OF ATTRACTION AND CONVERGENCE RATE

The potential given by (7) usually allows for an infinite number of distinct

\ .“L.
t:; : stable states (memories), thus having infinite capacity. This however does not
\';_ reveal the shape of the basins of attractions of these memories.
Exé For analyzing the performance of the system in (7) as an associative memory,
gjﬁ assume the simplified assumptions that fa(-) is a monotonically nondecreasing

;. function, independent of a and that Ilu(a) - u(€)|| > 1, for every a # 8 € A.

"
i;ﬁ We shall investigate the value of:

tfﬁ € ax & min {max{o; s.t. ||x(0)-u(a)[| < p implies x(t) -~ u(a)}}. (12)
i,?’ {u (o) } P e

)
;éié It is clear from symmetry arguments that € ax < 1/2 (where the outer minimiza-
.12 tion is over all possible positions of {u(a)}QEA in nfﬁ.

?i Our aim is to show that a proper choice of f(-) (which is sub-harmonic) will

lead to € ax as close to 1/2 as desired, thus the "maximal' basin of attractions

S
Ll S AL S

can be guaranteed,

J
0wy The following lower bound on € nax is derived in the Appendix, by bounding
- the maximal contribution of farther away particles to forces in the boundary of
i
-, (@),
M} the €nax sphere around u*"’:
‘:b: : Lemma 2. (a). Emax is larger than any value of r < 1 satisfying:
O :
o i d ' 2 N
Lt £f'(r)r > T {Ct-r) £ ((t-T) ") }(2t+1) 'dt. (13)
» 1
:j : (b). This is a tight bound in the sense that whenever the r.h.s. of (13)
hoo
_:§? diverges then ¢ = 0.
s max
Y We shall now restrict our attention to f(d) = -k(éia_m with m > (% - 1),
. 0
Q{j integer, (this guarantees that f(-) satisfies equation (4)).
L]
‘S
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3
"e . The r.h.s. of (13) is finite iff m > % - %, and then, for integer m, (13) is
N
exactly:
‘;&.; .
, ( )
ny - {(2m+1 m, N -(2m+1 k72
:E:n' (kn 4 (Zm1) 5 (km a3 (1-r) (2m+1) 3 == [ (- 1k (14)
bt : k=0 (
o k
“ which leads to
it
N} .
t" » v '1
) 1 1 _(N+1),1/(2m+1)
::"l. F>€ ax(m,N) > {l + [5 3 ] (1%)
l"'.‘
e
so, for any N, lim {e ax(m,N)} = 1/2, and for any m = %(k(Nirl) - 1) with k > 1
J Mmoo M
SN : 1 k .
oy fixed, lim {e (-z—(k(N+1) -1),M} =1/(1 + V/3). So even for m = N/2,
7 N
ﬂ} g __(m,N) ~ 1 for N large enough
A max* "’ 4’ )
R
-
_‘:: Remarks. 1. If the {u(a) }on€A are restricted to be contained in a sphere of radius
e .
"i p in Rr\, then the integral in the r,h.s. of (13) will have upper limit 2p, and
LIS \
the additional term (2p-r)}f'({(2p-r) 2) (4p+1)b‘ would be added there. It is thus
;:: finite for every value of m (including the harmonic case m = —I; - 1), implying
.»f%
o £ > 0 under this restriction.
max
J 2. For N -+ =, and fixed k, the 1/(1 + k/s_) behaviour is maintained even
50
).:j' when we consider only memories {u(a) }a€A which are contained in the unit sphere
q \‘b
! :}' (p = 1), as a refinement of the arguments of Lemma 2 shows.
: As for the rate of convergence, it is easy to verify that for a large
_\::'_: value of m, and x(0) far from all the {u(a)} €A’ it will take a long time for
T
::',::; the evolution in (1), before x(t) will be near one of the {u( )}OLEA' However
'
(as we prove in the Appendix):
:'::f: Lemma 3. Let Q be any closed set in IRN whose interior includes the convex hull
xS ,
:::j: of {u(.a) }O.EA U {u}, where u is an arbitrary point in R (possibly within the
convex hull of {u(a)} ). Then, adding 1 g(] IX-EH:')) to V(x), where g(x)
‘{‘ O.EA ’ ng »
?‘i';,'
4

Yy LN “ RIS
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11

is any nondecreasing, differentiable function will not disturb (A3), nor create
additional fixed points to (1), provided all the fa(') which compose V(x) are

monotonically increasing.

Therefore, if for example g(d) = d8 is added (with 8 > 1), then the conver-

gence from x(0) at infinity to a point with squared distance dO from the points
{u(a)}QEA and u (with dO much larger then the squared distances between these
|Al + 1 points), takes the time T ~ da(s-l)/48(8-1). Thus, by using £, large
enough, convergence from infinity to 3Q (the boundary of Q) can take arbitrarily
small time.

Global investigation of the rate of convergence inside the convex hull of
{u(o‘)}aEA is quite cumbersome. Thus, let us restrict again the discussion to the

\d

case where ||ul® - B 51, £a) = k(D)™ (with m >3, is an integer).
0

2
Furthermore, let x(0) satisfy ||x(0) - u(a)ll 5_e€(m,x) where € < 1, and £(m,N)
is the lower bound on emax(m,N) given by the r.h.s. of (15).

We have seen already that for every 6 < 1, x(t) - u(Q), but (as we prove

{0

in the Appendix):

Lemma 4. Under the above conditions x(T) = u(a), where:

. (8§£;é§))(2m+2) (E;%> {1_ [iil-_gziz:§;;]2m+l}—l. (16)

So that for m large enough, /35 = €(m,N), and k = d0/2m, we obtain log T ~

2(m+1)log 6. Again, by enlarging m while preserving 6 fixed, T can become

arbitrarily small.

g
>

I‘
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3
“w
~

g
i
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To conclude - the '"maximal' basins of attraction can be guaranteed by en-

£

|

larging m (choosing strong, short range interactions), and this will also speed

x
ol

+

up the convergence within these basins of attraction (which is completed in an
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Rar arbitrary small finite time). The convergence from infinity to the neighborhood
W {u(O‘)]'O‘eA can be fasten, without affecting all those properties, by the mechanism

3& suggested in Lemma 3 (adding a long .range field outside a proper set Q).
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III. DISCRETE TIME EVOLUTION ON THE UNIT HYPERCUBE

Whereas the discrete time algorithm presented in the introduction uses V(-)
which has no local minima outside {U(Q)}aEA’ it might possess fixed points out of thi
set. The reason for that is the "rigidity" of the algorithm which might not allow
descent in the gradient direction, due to the limited search for lower potential
only in the Hamming distance one neighborhood of every x € Hx.

We can, however, show that the proposed class of potentials is optimal
according to the Information Theory bounds (as N ~ «), and in particular can be
used to design error correcting codes with positive rate (c.f., [15]).

Let us restrict the discussion to potentials of the form (11), with f(d) =
-m N

-d ", m 25 1. For simplicity of notation we use the normalized Hamming dis-
N

tance ||x-y|| 4 %~ ) |xi-yi|, so that H' is contained in the unit sphere, and
i=1

assume that Vi # j, \‘u(l) - u(J)]].i 20, with %.Z e > %, fixed. Therefore,

these code words {u(t)}¥

j=1° can tolerate up to PN errors in N coordinates.

As we prove in the Appendix, by bounding the total "force' the farther away

particles apply on x(0), we obtain:

Theorem 2. For every x{0) such that ||x(0) - u(l)ll < 26p, %‘i 6 >0, and:

-2m

2

1-6 2m E - (1 + o

5 7 7m ' (17)
SRR

(a). The discrete time algorithm will generate a sequence of states {x(n)}

(K-1) 5(

n=1’
such that vn, [|x(n) - u(l)ll < {Ix(n-1) - u(l)ll with equality iff x(n-1) = x(n).

(b). There are exactly %[Ix(O) - u(1)|| distinct states in this sequence,
and if each coordinate has positive probability to be chosen as the updated

(1)

coordinate, then x(n) converges to u

with probability one.
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Consider now 0 > 0, and 6 < % fixed, with m z_§{10g2+e<l%g)}-l (where € > 0
is arbitrarily small). For this case, if N is large enough the r.h.s. of (17) is
larger than ZN, thus K is determined only by the bounds on the maximal number
of points in HN satisfying vi # j, [Iu(i) - u(j)|| > 2p, i.e., Information Theory
asymptotic, sphere packing bounds for error correcting codes (c.f., [15]).

To conclude, Theorem 2 guarantees that for short range forces (i.e., m(N)
large enough), and large enough dimension, direct convergence (c.f., [3] for this
definition) to the nearest code word is obtained, independently on the number of
code words and their locations, provided that its initial distance is smaller than
% min |]u(i) - u(j)ll.

i#j

For comparison, for the model of [1] which has "strong'" forces, the maximal
nunber of memories is bounded above by N even for 8 =0 (i.e., recall with no
errors). Thus, this model has zero rate when referred to as an error correcting
code (c.f., [16]). Even when it converges, the convergence time might grow ex-
ponentially with N, unlike the linear time guaranteed by Theorem 2 (when proper
selection of the updated coordinate is done).

Although Theorem 2 was derived for the simplest case of equal desired

basins of attraction, it can be generalized to other situations.

ca - L Ny e T e e
e "'4-,..-, N A

- A
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et IV. LEARNING AND COMPLEXITY

L)

0 : .
k) A. Learning

Y The associative memory models presented in the preceeding two sections are
" capable of both storing information and recalling it. The analysis was restricted
e

rfbﬁ to the Euclidean state space, and the unit hypercube (equipped with the Hamming
B

r norm), merely for simplicity of presentation, and to enable comparison with

Y

‘ Hopfield models (c.f., [1,13]).

"
‘. ‘i, - . 13 - - .
§~v When the state space is an arbitrary Riemannian manifold, the evolution

SN

§§s (1) can be defined more abstractically as the potential ODE's on that manifold,
1A

a? with the gradient and Laplacian operators in (1) and (10) being defined on the
:;: nanifold. As the maximum principle/Gauss theorem (c.f., [16]), which was the

A

o key to Theorem 1, is valid also on any Riemannian manifold, most of the results
" in this work can be extended to this more general context.

o

o~ As for the discrete time version of the algorithm, it can be easily ex-

™

4

o .

}}) tended to any finite graph whose vertices are embedded in ]Rx, (c.f., [12]).

) The process of storage and recall of information described in this work ¥
.

o |
f‘:; does not involve any learning nor generalization (in the sense of [17]). It

J‘ ‘- |
oo is also uncapable of creating periodical orbits (as done for example, in [4]).
)

s However, by further generali:zing the kinematical laws, one can incorporate most
.-t.-

ﬁﬂj of these phenomena.

;:: For example, periodical orbits can be generated by modifying (1) to the

1)

o more ''classical' equation of motion:

.‘D.‘

- K s 20 - X (18)
N m
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which for N = 3 is just the Newtonian motion of particle with mass m, in the
field of the potential V(-:), with viscosity coefficient Uy,

Likewise, learning can be obtained by modifying the locations of {u(a)}aEA

during the recall operation, either as a response to the distribution of the
initial states x(0), or to an external teaching procedure, or by adding inter-
particles interactions. These modifications can be implemented within the
evolution (1) (or (18)), by allowing the state x(t) to be represented by a non-

negligable particle, which apply forces on the given (u(a)} Generalization

Q€A’
(which is basically a spontaneous creation of clustering) is easily obtained

(o) }

once the {u Q€A particles are allowed to apply forces one on the other, and
change their locations.

Of course, in order to make all these remarks valid, goals should be defined
rigorously, and mathematica/physical rules that will achieve them should be in-
corporated within this framework.

We conclude this subject by pointing out that we have shown that there is
nothing special in Spin-Glass models, and other known models in phy: - and
mathematics possess the 'bmergent collective computational abilities', onc

¢

are properly interpreted.

B. Complexity

Our proposed models have better performance than the models in [1,13], but
what about the implementation complexity?

For comparison purposes we deal with three algorithms on HN. The first one

- ,
to {u(l))l.\~ N

is the classical Hamming decoder w.r.t. j=1 © H' . It involves the par-
(1)

allel computation of the K correlations (u ,X(0)) (where x(0) € Hx as well),
followed by a search for the maximal value, implemented in a tree structure,.

Thus, KN multiplications are needed together with K log K comparisons of pairs

o LAyt VRN W
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of numbers, and the delay of the algorithm is log K + 1 "unit' times (where com-
parison and multiplication are assumed equivalent throughout).

The second algorithm is the one suggested in [1]. Each iteration involves
KN multiplications and N comparisons of pairs of numbers (since K < N for this
algorithm, as shown in [3,6,7,9,10]). The time delay however, is the number
of iteraticns ("full sweeps', as all N coordinates are updated asynchronously),
which is believed to be independent of K.

The last algorithm is the one suggested here in Eq. (11), with fi(d) = -d",
It involves KN multiplications in each iteration for obtaining the d's. The
operation of fi(-) is quite simple once done by an analogue computer: Cne diode
takes log d, then multiplication by (-m) is done, and at last a second diode com-
putes -exp[-m(log d)] = -d™™. So the overall complexity is again determined by
the KN multipliers, and the time delay (in 'full sweeps") is again a small con-
stant as Theorem I implies.

Thus, for K < N, the new algorithm has the same complexity as Hopfield's
scheme, and the classical Hamming decoder, with smaller time delay for the first
two algorithms.

2h(o)N

This result is true also for K ~ , but then the Hopfield model cannot

be used, whereas the new algorithm has complexity which is linear in K, i.e.,
exponential in N. In this case it is better (in time delay) then the classical
Hamming decoder, but does not admit the polynomial complexity of some of the

special error correctirg codes used in coding theory (c.f., [15]).

- - - - ¢ -
-
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APPENDIX

Proof of Theorem 1.

. . ) . N

We use assumption (Al) for the case of atomic measures on A xR, i.e.
V(x) = f(x,no,ao). Consider first a translation of the coordinates, i.e.
x' = x + ., with proper translation of the atomic measure yu, i.e., né

As assumption (Al) implies that V(x') = V(x), f(x,no,a0)= f(x+4, n.+L, ao) for

0
every no,x,; QIRN and every ao € A. Thus, f(x,no,ao) depends only on X-ng-
Repeating this argument for the case of rotation of the coordinates will prove
that f(x,n,,a,) depends only on ]]x-nollz for every aj € A,

Thus, the structural assumptions (Al) and (A2) impose that V(-) is of the
form given in (3).

We now assume that (4) is satisfied for every o € A. It is easily verified

that (4) is equivalent to:
N 2
vx €R" - {n} A f (lx-n[]%) <0 (A.1)

where A, is the Laplacian operator w.r.t. x. Equation (A.1) implies in view

of (3), that for every neighborhood U(x) of x EIRN,

in which f p(nxda) is identically zero,
a€A

AxV(-) <0 (in U(x)). In deriving this result we used the smoothness assumption |
on V, together with integrability assumption on Axf(-) to allow for changing the

order of differentiation and integration. Suppose now that fa(-) satisfies (4)

VYa € A, but there exists a local minima at Xq € RN with U(xo) in which

faeAu(ﬂXda) = 0. On U(xp), AXV(-) < 0, so the maximum principle implies that the

minimur of V(:) in any closed subset of U(xo) is obtained on the boundary of
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i
) :
:ﬁgd U(xo) (c.f., [18]). However, since X0 is a local minima there exists a small,
g closed neighborhood around it such that V(xo) < Inf V(x) on that neighborhood,
AR
4. so contradiction is obtained.
2N
B0,
Remark: We have shown that Eq. (4) guarantees that assumption (A3) holds, where
:"l'. ‘
;::‘ we interprete as local minima only isoclated points. Refinement of the above
, -l
AN
e arguments leads to the elimination of constant surfaces of local minima, when-
Lo
. ever strict inequality holds in (4).
L . \J
iﬁd To complete the "only if" part of Theorem 1, we assume that (4) does not
L] \J
jig hold for a, € A and d0 > 0, and consider the case of V(:) generated by (3) with
W
“‘) t{d~xda) being an atomic measure on ay x a uniform measure on the sphere of radius
:{: /Za'in Rx. ve shall prove that in this case there is a spourious local minima
RS
N
,-:- of V() at x = 0, which contradicts assumption (A3), as d0 > 0.
i At x = 0, l[x—ﬂ'lz = dO for every n on the sphere of radius /EE, which
p~
o implies that A V(*) > 0 at x = 0 (since (4) and therefore (A.l) dces not hold
p- ‘l - p x
I}: there). The continuity of AxV(-) near x = 0 is imposed by our smoothness as-
L) |
:) sumption, and guarantees that there is a spherical neighborhood U(0) where
A
AN AXV(-) > 0. Since the measure u 1is spherically symmetric, so is the potential
Sl
o V(+), (i.e., V(x) depends only on ||x[|). We now apply the maximum principle on
roee
o the concentric spheres contained in U(0), and see that in any such sphere the
v,
e maximum of V(-) is obtained only on the boundarv. However, the spherical sym-
e
i metry of V(-) implies it is constant on these boundaries; i.e., x = 0 is a local
-
i minima of V(.), as we claimed above. o
o
e . .
N Proof of Lemma 1. Whenever £!(d) = 0, (4) implies that f&(d) < 0, so that
' —
na
>
.S}f £!(d) can cross the zero level only once in d € (0,%), and with £.(d) < 0.
Iy Thus, solutions of (4) will possess at most one local maxima and no local
b2
vt
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minima in (0,%). It is easy to verify that (4) is equivalent to
, N/2 . . . .
fa(d)d is monotonically non-increasing on (0,®). (A.2)
Thus:
- do N/2 -
' ' - o 3
fQ(d) < fa(d0)<a) , for «>d > do >0 (A.3a)
. N% .
fr{d) > f'(d )( > , for 0 <d <d, < (A.3b)
o — 0 3 -0
Integrating (A.3a) from do to d > do, and using the condition
£2(dp)dy
fa(do) = - will lead to (5a), whereas integrating (A.3b) from d < d

N -0
-1
to dO will lead to (Sb), for N > 3. Similar results can be obtained for N = 1,2,

but are less interesting. o

Proof of Lemma 2. (a) Since f(-) is sub-harmonic (satisfies (4)), and mono-

tonically nondecreasing (£'(d) > 0), it follows that f(.) atisfies (4) also for
N=1, i.e., that f'(rz)r is a monotonically nonincreasing function of r € R+.

For every r > 0 such that le-u(a)|[ < r implies (WV, x-u(a)) > 0, independently

of the locations of the other {u(--m)}aEA memories, the evolution (1) will mono-
tonically decrease |[x-u(a)|| until x(t) = ul®) Thus, any such r is a lower
bound on €nax” In view of (7):
1 ' | .,
— L (W, xu @) - 1 edie w812 Leu O
2] x-u* || Hx - Il

> £ xu® 13 @] - ] £ x-u® 1 1)
Rta
> £ () x-u® A xu @) - 8; £ 0@ B ) fen @]y 2y
o

U IR ER TP

-] [x-u

L) ™ W o« u-r-

A SO TR Ol
Yegyv.yvynew W T ) T Y. Bt A N
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2G0T - ] Uy e o baned £ (((10€) 1) %) ((1ene) -1)
n=0
2 - 2
= £1(x )T - I Lo -t e e -
t =l+ne, n>l t,non-l n n
AT T CIIS S VICIE I (A.4)

where L, = L {&; |lu(p)-u(a)|i <t, B#a, B €A}, € >0 is an arbitrary constant.
The first inequality in (A.4) comes from the Cauchv-Schwartz inequality, the
second from the triangle inequality and the monotonicity of f'(rz)r w.Tr.t. T, and

(0)||

- the third from the condition ]lx-u < r <1 and the monotonicity of f'(rz)r.

The lower limit on n is because of L, = 0, t <1, and the last equality holds due

-
to this fact. Since r < 1, f'((t-r)”)(t-r) possesses a continuous derivative on
t € [1,~), and Lt is measurable (since it is composed of a countable number of dis-

crete steps), the r.h.s. of (A.4) is a continuous function of € > 0 which possesses

5
the limit (as € - 0): f'(rz)r + fw Lt é%-{f'((t-r)“)(t-r)}dt, which is also a
1

lower bound on the 1.h.s. of (A.4), where in the derivation we assumed that this
integral is finite, (i.e., at least lim Lt é%{f‘((t-r)z)(t—r)} = 0). 1In case it
t—=

diverges, the same analysis can be done on {u

(a) }

€A which are restricted to be
in a sphere with radius p, which means Lt = const, for t > 2p, and then the 1l.h.s.

of (A.4) converges (for € -+ 0) to

2 2 2p d 2
£1(ré)r - L, £'((20-1)°) (26-1) + L.~ £r((t-1)%)(t-1)dt.
2p 1 t dt

Thus, (13) will follow from the inequality L. < (2t+1)", since £'((t-1)2) (t-1)

is monotonically non-increasing.

. «Q
However, this inequality follows from the condition llu(a)-u(”)|] > 1,
Va # B, as the N dimensional sphere of radius (t + %Q, around u(a), contains at

least (Lt+1) disjoint spheres of radius 1/2 each. Comparing the volumes of the

large sphere and the (Lt+1] small ones we obtain the desired inequality.
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iy (b) Consider the case when the r.h.s. of (13) diverges. Then even if we

consider this integral with lower limit T >> 1 it still diverges to +®. A well
known sphere packing result is that there exists {u(a)}QEA such that

lim [Lt/(2t+1)x] >8>0 (c.f., [22]). For these {u(u)}

t—)OD

wEA” the last line in

(A.4) can be arbitrarily large, negative numbers for small ¢, for every r > 0,

(o)

? - 0
as f'(r")r is finite. Furthermore, we can obtain this result also when u

(8

is at the origin and u

(8)

, B# aare all at the upper half space (i.e., the first
coordinate of u is non-negative). Consider for any r > 0 the state x with
first coordinate equals to r, and the rest being zero. As t - « the distribution

of the {U(Q)}OL€A ¢lements in an infinitesimal disk between the spheres of radius

t and (t + At) becomes spherically uniform in the upper half space; therefore, as

/2
lim {———_L_‘—T_T f cos B dA} > 0 (where dA is a volume element on this disk,
w2

twoo MAt(2t+1)°
and 6§ is the phase w.r.t. to the first coordinate axis), for the chosen x,
(v, x-u(u)) = -» provided that the second line in (A.4) diverges. However, we

already know that the last line in (A.4) diverges, even when only t > T >> 1

]|U(E)'U(a)|l: l]u(ﬁ)_u(a)ll -

is considered, and for these values of t =

TMRENIIIMC @)

-x||, as r = |[x—u << t. Thus, both the second and the

last lines of (A.4) diverge together.
To conclude, we have shown that there is a sphere packing construction

(o) _

with u = 0, for which whenever the r.h.s. of (13) diverges, choosing x(0)

with the first coordinate arbitrarily small positive, and the rest of them :zero,
will result in x with arbitrarily large positive first coordinate and the rest
of them zero (using symmetry arguments), so that x(t) will move along the posi-

tive part of the first axis and never converges to u(q) = 0. Thus, Emax =0

in this case. o
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A Proof of Lemma 3. By adding lngg(||x-ul|“) to V/(*) we have not changed V(-) or
KL
- the evolution (1) in the interior of Q. Thus, we only have to prove that there
»
;}: are no fixed points of (1) outside Int Q.
2 Assume that X5 £ Int Q is a fixed point of (1), and denote by C < Int Q the
-~ convex hull of {u(a)}QEA U {u}, then there is a convex, closed, neighborhood U(xo)
:i of Xg» such that U(xo) NC=% (as C is a closed set). Thus, there is an hyper-
_’.\
A
> plane & that strictly separates C and U(xo) (which is also compact); let n denote
) the vector normal to & towards C. Now, on U(xy):
o 2, (o) 2, -
> Gom) =+ 7 280 e-u®@ ) H D oxon ¢ 1 200 (] x-T A @xm >0 (ALS)
> w€r @ x£Q
o
‘:; where the inequalitv follows from the monotonicity of the fa(—)'s and g(-), and
'fjj the geometry of the problem. Thus, in particular x # 0 at Xq € U(xo), which
a7
f:} contradicts the assumption that X5 is a fixed point of (1).
- We have also shown by (A.5) that there is a drift towards C, from any point
ﬁ: x € C. o
-
t) Proof of Lemma 4. Let us define R(t) = le(t)-u(a)]|, then for evolution (1):
~ ; - 1 (o)
b R(Y) = - gy (WO(D),x(0)-u )
.'_}'
2 2
™ < -Z{f'(r )r + r%[f'((u-r) )(u-r)]lhdu} (A.6)
.. 1
.\.
e where r £ 6¢(m,N), and in deriving (A.6), we used (A.4), and the condition
2.
oY ~ .
_x [|x(0) - u(a)ll < €€(m,N) which ensures that R(t) < R(0) < r (due to (15)).
However, (13) - (15) also bound the r.h.s. of (A.6) for £(d) = k() ™, and give:
D, 0
I«
. _ (2m+1)  A(m.N (2m+1)
R(t) < -2kmd’3{ (—1-—> - ( L E(m.) ) } (A.7)
8€(m,N) €(m,N) (1-8€(m,N))
gﬁ Integrating (A.7), and using the fact that R(t) > 0, we obtain R(t) < O
N hl
;%n for t > T, where
i




Xy

=

Iy 25
N
2
N 2m+2) d 2m+1
3 62 (m,x) \ (72 9y 8(1-2(m, 1)) (P!
N T = [ T LR Cavomttans ) (A.8)
/% . 1-8€(m,N)
:ﬁ: However, R(t) < 0 implies R(t) = 0, that implies x(t) = u(a) for t > T. ol
Procf of Theorem 2. Consider a neighborhood vy of x(n) with Hamming distance one,
oY
b} . . . . R
k2 then either (A) | ly-u' [} = 1xm w11 - & or @) [y = e -@1 4 2
.-J . . . . I
:j and for x(n) # u(l), there are exactly %ﬂ]x(n)—u(l)[‘ > 1 neighbors of type (A).
o <
The theorem is thus a direct corsequence of the following claim (when (17) holds):
- .
2 Claim: For any x such that ]lx—u(l)ll < 260 then V(») < V(x) for neighbors v of
3 — -
,;} type (A), and V(y) > V(x) for neighbors y of type (B).
4;1 Proof of the Claim. Note that for any 1 < j <K, - %‘f_!IY-u(J)!!
b h
ﬁ: P x- u(1)|| < ;u since y and x differ only in one component. Furthermore, it is
N N
W enough to show that V(y) > V(x) for neighbors y of type (B), with strict inequal-
- ity for I[x-u(l)l[ < 280, since if y is of type (A) w.r.t. X, then l}y-u(l)ll < 28c
zj as well, and x is of type (B) w.r.t. y.
’j Since the function f(d) is monotounically increasing, and y is of type (B):
o (3) 2 (33 2y2
-~ . .
50 ECly-ut 119 2 f(CHx-u T - 259 v £
‘o . (A.9)
‘O i 2 i 2,2 ’
o ey % < s 1xu@ )+ Y
'#. So,
”
_:: , i -2 2 -2m
Ve - veo 2 {d @ (@) B
:'. K
2 -2m j -2m
: VR (I PR IS PRNE AP (410
:f i
-~ j#i
- But, |[x-u | < 260 and |[x-u 1] > [P D) s 2000,
. . A -2m -2m . ) ,
Yy and the function g(r) = r - (r+h) is a monotonically decreasing function,
..fl
e,
;f so from (A.10):
e
¢
L]
b
_ . - - . . e - C L e P S ST *UPEE NN SRR S
R .l.m,‘u‘ N \.‘-\ > :'.'-"'-\."‘\"'l'-."' "s.(')'»-s"."-"- ] S SRAAN LT ':.J ,
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V(y) - V(x) > {(2€c)':m - (2% + %)'2'}

(K-l){(l’o(l-a) - % - (20(1-e))'2’“} (A1)

. . . . i .
with strict inequality whenever le-u( )]l < 2c8. To complete the proof, we just
have to show that the r.h.s. of (A.11) is non-negative whenever (17) holds. This

is easily shown by a simple rearrangement of (A.ll) using ¢ < 1/2 and (1-%) > 1/2.
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